

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Tutorial on how to add a badge for a service

This tutorial should help you add a service to shields.io in form of a badge.
You will need to learn to use JavaScript, Git and GitHub, however, this document
will guide you through that journey if you are a beginner.
Please improve the tutorial [https://github.com/badges/shields/edit/master/doc/TUTORIAL] while you read it.

(1) Reading

	Contributing Guidance

	Documentation [https://contributing.shields.io/index.html] for the Shields Core API

	You can also read previous
merged pull-requests with the ‘service-badge’ label [https://github.com/badges/shields/pulls?utf8=%E2%9C%93&q=is%3Apr+label%3Aservice-badge+is%3Amerged]
to see how other people implemented their badges.

(2) Setup

Pre-requisites

Git

You should have git [https://git-scm.com/] installed.
If you do not, install git [https://www.linode.com/docs/development/version-control/how-to-install-git-on-linux-mac-and-windows/]
and learn about the Github workflow [http://try.github.io/].

Node, NPM

Node 8 or later is required. If you don’t already have them,
install node and npm: https://nodejs.org/en/download/

Setup a dev install

	Fork [https://github.com/badges/shields/fork] this repository.

	Clone the fork
git clone git@github.com:YOURGITHUBUSERNAME/shields.git

	cd shields

	Install project dependencies
npm ci

	Run the badge server and the frontend dev server
npm start

	Visit the website to check the front-end is loaded: http://localhost:3000/.

In case you get the “getaddrinfo ENOTFOUND localhost” error, visit http://127.0.0.1:3000/ instead or take a look at this issue [https://github.com/angular/angular-cli/issues/2227#issuecomment-358036526].

(3) Open an Issue

Before you want to implement your service, you may want to open an issue [https://github.com/badges/shields/issues/new?template=3_Badge_request] and describe what you have in mind:

	What is the badge for?

	Which API do you want to use?

You may additionally proceed to say what you want to work on.
This information allows other humans to help and build on your work.

(4) Implementing

(4.1) Structure and Layout

Service badge code is stored in the /services [https://github.com/badges/shields/tree/master/services/] directory.
Each service has a directory for its files:

	In files ending with .service.js, you can find the code which handles
incoming requests and generates the badges.
Sometimes, code for a service can be re-used.
This might be the case when you add a badge for an API which is already used
by other badges.

Imagine a service that lives at https://img.shields.io/example/some-param-here.

	For services with a single badge, the badge code will generally be stored in
/services/example/example.service.js.
If you add a badge for a new API, create a new directory.

Example: wercker [https://github.com/badges/shields/tree/master/services/wercker]

	For service families with multiple badges we usually store the code for each
badge in its own file like this:

	/services/example/example-downloads.service.js

	/services/example/example-version.service.js etc.

Example: ruby gems [https://github.com/badges/shields/tree/master/services/gem]

	In files ending with .tester.js, you can find the code which uses
the shields server to test if the badges are generated correctly.
There is a chapter on Tests.

(4.2) Our First Badge

All service badge classes inherit from BaseService [https://contributing.shields.io/module-core_base-service_base-baseservice] or another class which extends it.
Other classes implement useful behavior on top of BaseService [https://contributing.shields.io/module-core_base-service_base-baseservice].

	BaseJsonService [https://contributing.shields.io/module-core_base-service_base-json-basejsonservice]
implements methods for performing requests to a JSON API and schema validation.

	BaseXmlService [https://contributing.shields.io/module-core_base-service_base-xml-basexmlservice]
implements methods for performing requests to an XML API and schema validation.

	BaseYamlService [https://contributing.shields.io/module-core_base-service_base-yaml-baseyamlservice]
implements methods for performing requests to a YAML API and schema validation.

	BaseSvgScrapingService [https://contributing.shields.io/module-core_base-service_base-svg-scraping-basesvgscrapingservice]
implements methods for retrieving information from existing third-party badges.

	BaseGraphqlService [https://contributing.shields.io/module-core_base-service_base-graphql-basegraphqlservice]
implements methods for performing requests to a GraphQL API and schema validation.

	If you are contributing to a service family, you may define a common super
class for the badges or one may already exist.

As a first step we will look at the code for an example which generates a badge without contacting an API.

// (1)
'use strict'
// (2)
const { BaseService } = require('..')

// (3)
module.exports = class Example extends BaseService {
 // (4)
 static get category() {
 return 'build'
 }

 // (5)
 static get route() {
 return {
 base: 'example',
 pattern: ':text',
 }
 }

 // (6)
 async handle({ text }) {
 return {
 label: 'example',
 message: text,
 color: 'blue',
 }
 }
}

Description of the code:

	We declare strict mode at the start of each file. This prevents certain classes of error such as undeclared variables.

	Our service badge class will extend BaseService so we need to require it. Variables are declared with const and let in preference to var.

	Our module must export a class which extends BaseService.

	Returns the name of the category to sort this badge into (eg. “build”). Used to sort the examples on the main shields.io [https://shields.io] website. Here [https://github.com/badges/shields/blob/master/services/categories.js] is the list of the valid categories. See section 4.4 for more details on examples.

	route() declares the URL path at which the service operates. It also maps components of the URL path to handler parameters.

	base defines the first part of the URL that doesn’t change, e.g. /example/.

	pattern defines the variable part of the route, everything that comes after /example/. It can include any
number of named parameters. These are converted into
regular expressions by path-to-regexp [https://github.com/pillarjs/path-to-regexp#parameters].
Because a service instance won’t be created until it’s time to handle a request, the route and other metadata must be obtained by examining the classes themselves. That’s why they’re marked static. [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/static]

	There is additional documentation on conventions for designing badge URLs

	All badges must implement the async handle() function that receives parameters to render the badge. Parameters of handle() will match the name defined in route() Because we’re capturing a single variable called text our function signature is async handle({ text }). async is needed to let JavaScript do other things while we are waiting for result from external API. Although in this simple case, we don’t make any external calls. Our handle() function should return an object with 3 properties:

	label: the text on the left side of the badge

	message: the text on the right side of the badge - here we are passing through the parameter we captured in the route regex

	color: the background color of the right side of the badge

The process of turning this object into an image is handled automatically by the BaseService class.

To try out this example badge:

	Copy and paste this code into a new file in /services/example/example.service.js

	The server should restart on its own. (If it doesn’t for some reason, quit
the running server with Control+C, then start it again with npm start.)

	Visit the badge at http://localhost:8080/example/foo.
It should look like this: [image: _images/example-foo-blue.svg]

(4.3) Querying an API

The example above was completely static. In order to make a useful service badge we will need to get some data from somewhere. The most common case is that we will query an API which serves up some JSON data, but other formats (e.g: XML) may be used.

This example is based on the Ruby Gems version [https://github.com/badges/shields/blob/master/services/gem/gem-version.service.js] badge:

// (1)
'use strict'

// (2)
const { renderVersionBadge } = require('..//version')
// (3)
const { BaseJsonService } = require('..')

// (4)
const Joi = require('@hapi/joi')
const schema = Joi.object({
 version: Joi.string().required(),
}).required()

// (5)
module.exports = class GemVersion extends BaseJsonService {
 // (6)
 static get category() {
 return 'version'
 }

 // (7)
 static get route() {
 return {
 base: 'gem/v',
 pattern: ':gem',
 }
 }

 // (8)
 static get defaultBadgeData() {
 return { label: 'gem' }
 }

 // (11)
 static render({ version }) {
 return renderVersionBadge({ version })
 }

 // (10)
 async fetch({ gem }) {
 return this._requestJson({
 schema,
 url: `https://rubygems.org/api/v1/gems/${gem}.json`,
 })
 }

 // (9)
 async handle({ gem }) {
 const { version } = await this.fetch({ gem })
 return this.constructor.render({ version })
 }
}

Description of the code:

	As with the first example, we declare strict mode at the start of each file.

	In this case we are making a version badge, which is a common pattern. Instead of directly returning an object in this badge we will use a helper function to format our data consistently. There are a variety of helper functions to help with common tasks in /services. Some useful generic helpers can be found in:

	build-status.js [https://github.com/badges/shields/blob/master/services/build-status.js]

	color-formatters.js [https://github.com/badges/shields/blob/master/services/color-formatters.js]

	licenses.js [https://github.com/badges/shields/blob/master/services/licenses.js]

	text-formatters.js [https://github.com/badges/shields/blob/master/services/text-formatters.js]

	version.js [https://github.com/badges/shields/blob/master/services/version.js]

	Our badge will query a JSON API so we will extend BaseJsonService instead of BaseService. This contains some helpers to reduce the need for boilerplate when calling a JSON API.

	We perform input validation by defining a schema which we expect the JSON we receive to conform to. This is done using Joi [https://github.com/hapijs/joi]. Defining a schema means we can ensure the JSON we receive meets our expectations and throw an error if we receive unexpected input without having to explicitly code validation checks. The schema also acts as a filter on the JSON object. Any properties we’re going to reference need to be validated, otherwise they will be filtered out. In this case our schema declares that we expect to receive an object which must have a property called ‘version’, which is a string.

	Our module exports a class which extends BaseJsonService

	Returns the name of the category to sort this badge into (eg. “build”). Used to sort the examples on the main shields.io [https://shields.io] website. Here [https://github.com/badges/shields/blob/master/services/categories.js] is the list of the valid categories. See section 4.4 for more details on examples.

	As with our previous badge, we need to declare a route. This time we will capture a variable called gem.

	We can use defaultBadgeData() to set a default color, logo and/or label. If handle() doesn’t return any of these keys, we’ll use the default. Instead of explicitly setting the label text when we return a badge object, we’ll use defaultBadgeData() here to define it declaratively.

	We now jump to the bottom of the example code to the function all badges must implement: async handle(). This is the function the server will invoke to handle an incoming request. Because our URL pattern captures a variable called gem, our function signature is async handle({ gem }). We usually separate the process of generating a badge into 2 stages or concerns: fetch and render. The fetch() function is responsible for calling an API endpoint to get data. The render() function formats the data for display. In a case where there is a lot of calculation or intermediate steps, this pattern may be thought of as fetch, transform, render and it might be necessary to define some helper functions to assist with the ‘transform’ step.

	Working our way upward, the async fetch() method is responsible for calling an API endpoint to get data. Extending BaseJsonService gives us the helper function _requestJson(). Note here that we pass the schema we defined in step 4 as an argument. _requestJson() will deal with validating the response against the schema and throwing an error if necessary.

	_requestJson() automatically adds an Accept header, checks the status code, parses the response as JSON, and returns the parsed response.

	_requestJson() uses request [https://github.com/request/request] to perform the HTTP request. Options can be passed to request, including method, query string, and headers. If headers are provided they will override the ones automatically set by _requestJson(). There is no need to specify json, as the JSON parsing is handled by _requestJson(). See the request docs for supported options [https://github.com/request/request#requestoptions-callback].

	Error messages corresponding to each status code can be returned by passing a dictionary of status codes -> messages in errorMessages.

	A more complex call to _requestJson() might look like this:

return this._requestJson({
 schema: mySchema,
 url,
 options: { qs: { branch: 'master' } },
 errorMessages: {
 401: 'private application not supported',
 404: 'application not found',
 },
})

	Upward still, the static render() method is responsible for formatting the data for display. render() is a pure function so we can make it a static method. By convention we declare functions which don’t reference this as static. We could explicitly return an object here, as we did in the previous example. In this case, we will hand the version string off to renderVersionBadge() which will format it consistently and set an appropriate color. Because renderVersionBadge() doesn’t return a label key, the default label we defined in defaultBadgeData() will be used when we generate the badge.

This code allows us to call this URL https://img.shields.io/gem/v/formatador to generate this badge: [image: _images/formatador.svg]

It is also worth considering the code we haven’t written here. Note that our example doesn’t contain any explicit error handling code, but our badge handles errors gracefully. For example, if we call https://img.shields.io/gem/v/does-not-exist we render a ‘not found’ badge [image: _images/does-not-exist.svg] because https://rubygems.org/api/v1/gems/this-package-does-not-exist.json returns a 404 Not Found status code. When dealing with well-behaved APIs, some of our error handling will be handled implicitly in BaseJsonService.

Specifically BaseJsonService will handle the following errors for us:

	API does not respond

	API responds with a non-200 OK status code

	API returns a response which can’t be parsed as JSON

	API returns a response which doesn’t validate against our schema

Sometimes it may be necessary to manually throw an exception to deal with a
non-standard error condition. If so, there are several standard exceptions that can be used. The errors are documented at
errors [https://contributing.shields.io/module-core_base-service_errors.html]
and can be imported via the import shortcut and then thrown:

const { NotFound } = require('..')

throw new NotFound({ prettyMessage: 'package not found' })

(4.4) Adding an Example to the Front Page

Once we have implemented our badge, we can add it to the index so that users can discover it. We will do this by adding an additional method examples() to our class.

module.exports = class GemVersion extends BaseJsonService {
 // ...

 static get category() {
 // (1)
 return 'version'
 }

 static get examples() {
 // (2)
 return [
 {
 // (3)
 title: 'Gem',
 namedParams: { gem: 'formatador' },
 staticPreview: this.render({ version: '2.1.0' }),
 keywords: ['ruby'],
 },
]
 }
}

	We defined category earlier in the tutorial. The category() property defines which heading in the index our example will appear under.

	The examples property defines an array of examples. In this case the array will contain a single object, but in some cases it is helpful to provide multiple usage examples.

	Our example object should contain the following properties:

	title: Descriptive text that will be shown next to the badge

	namedParams: Provide a valid example of params we can substitute into
the pattern. In this case we need a valid ruby gem, so we’ve picked formatador [https://rubygems.org/gems/formatador].

	staticPreview: On the index page we want to show an example badge, but for performance reasons we want that example to be generated without making an API call. staticPreview should be populated by calling our render() method with some valid data.

	keywords: If we want to provide additional keywords other than the title and the category, we can add them here. This helps users to search for relevant badges.

Save, run npm start, and you can see it locally [http://127.0.0.1:3000/].

If you update examples, you don’t have to restart the server. Run npm run defs in another terminal window and the frontend will update.

(4.5) Write Tests

When creating a badge for a new service or changing a badge’s behavior, tests
should be included. They serve several purposes:

	They speed up future contributors when they are debugging or improving a
badge.

	If the contributors would like to change your badge, chances are, they forget
edge cases and break your code.
Tests may give hints in such cases.

	The contributor and reviewer can easily verify the code works as
intended.

	When a badge stops working on the live server, maintainers can find out
right away.

There is a dedicated tutorial for tests in the service-tests folder.
Please follow it to include tests on your pull-request.

(4.6) Update the Docs

If your submission requires an API token or authentication credentials, please
update server-secrets.md. You should explain what the
token or credentials are for and how to obtain them.

(5) Create a Pull Request

Once you have implemented a new badge:

	Before submitting your changes, please review the coding guidelines [https://github.com/badges/shields/blob/master/CONTRIBUTING.md#coding-guidelines].

	Create a pull-request [https://help.github.com/articles/creating-a-pull-request/] to propose your changes.

	CI will check the tests pass and that your code conforms to our coding standards.

	We also use Danger [https://danger.systems/] to check for some common problems. The first comment on your pull request will be posted by a bot. If there are any errors or warnings raised, please review them.

	One of the
maintainers [https://github.com/badges/shields/blob/master/README.md#project-leaders]
will review your contribution.

	We’ll work with you to progress your contribution suggesting improvements if necessary. Although there are some occasions where a contribution is not appropriate, if your contribution conforms to our guidelines [https://github.com/badges/shields/blob/master/CONTRIBUTING.md#badge-guidelines] we’ll aim to work towards merging it. The majority of pull requests adding a service badge are merged.

	If your contribution is merged, the final comment on the pull request will be an automated post which you can monitor to tell when your contribution has been deployed to production.

Badge URL Conventions

	The format of new badges should be of the form /SERVICE/NOUN/PARAMETERS?QUERYSTRING e.g:
/github/issues/:user/:repo. The service is github, the
badge is for issues, and the parameters are :user/:repo.

	Parameters should always be part of the route if they are required to display a badge e.g: :packageName.

	Common optional params like, :branch or :tag should also be passed as part of the route.

	Query string parameters should be used when:

	The parameter is related to formatting. e.g: /appveyor/tests/:user/:repo?compact_message.

	The parameter is for an uncommon optional attribute, like an alternate registry URL.

	The parameter triggers application of alternative logic, like version semantics. e.g: /github/v/tag/:user/:repo?sort=semver.

	Services which require a url/hostname parameter always should use a query string parameter to accept that value. e.g: /discourse/topics?server=https://meta.discourse.org.

It is convention to use the following standard routes and abbreviations across services:

	Coverage: /coverage

	Downloads or Installs:

	Total: /dt - Use this even for services that only provide the total download/install data

	Per month: /dm

	Per week: /dw

	Per day: /dd

	Rating:

	Numeric: /rating

	Stars: /stars

	License: /l

	Version or Release: /v

High-level code walkthrough

Code inventory and testing strategy

The Shields codebase is divided into several parts:

	The frontend (about 7% of the code)

	frontend [https://github.com/badges/shields/tree/master/frontend]

	The badge renderer (which is available as an npm package)

	gh-badges [https://github.com/badges/shields/tree/master/gh-badges]

	The base service classes (about 8% of the code, and probably the most important
code in the codebase)

	core/base-service [https://github.com/badges/shields/tree/master/core/base-service]

	The server code and a few related odds and ends

	core/server [https://github.com/badges/shields/tree/master/core/server]

	Helper code for token pooling and persistence (used to avoid GitHub rate limiting)

	core/token-pooling [https://github.com/badges/shields/tree/master/core/token-pooling]

	Service common helper functions (about 7% of the code, and fairly important
since it’s shared across much of the service code)

	*.js in the root of services [https://github.com/badges/shields/tree/master/services]

	The services themselves (about 80% of the code)

	*.js in the folders of services [https://github.com/badges/shields/tree/master/services]

	The badge suggestion endpoint (Note: it’s tested as if it’s a service.)

	lib/suggest.js [https://github.com/badges/shields/tree/master/lib/suggest.js]

The tests are also divided into several parts:

	Unit and functional tests of the frontend

	frontend/**/*.spec.js

	Unit and functional tests of the badge renderer

	gh-badges/**/*.spec.js

	Unit and functional tests of the core code

	core/**/*.spec.js

	Unit and functional tests of the service helper functions

	services/*.spec.js

	Unit and functional tests of the service code (we have only a few of these)

	services/*/**/*.spec.js

	The service tester and service test runner

	core/service-test-runner [https://github.com/badges/shields/tree/master/core/service-test-runner]

	The service tests themselves [https://github.com/badges/shields/blob/master/doc/service-tests] live integration tests of the
services, and some mocked tests

	*.tester.js in subfolders of services [https://github.com/badges/shields/tree/master/services]

	Integration tests of Redis-backed persistence code

	core/token-pooling/redis-token-persistence.integration.js [https://github.com/badges/shields/blob/master/core/token-pooling/redis-token-persistence.integration.js]

	Integration tests of the GitHub authorization code

	services/github/github-api-provider.integration.js [https://github.com/badges/shields/blob/master/services/github/github-api-provider.integration.js]

Our goal is for the core code is to reach 100% coverage of the code in the
frontend, core, and service helper functions when the unit and functional
tests are run.

Our test strategy for the service code is a bit different. It’s primarily
based on live integration tests. That’s because service response formats can
change, and when they do the badges break. We want our tests to fail when this
happens. That way we can fix the problems proactively instead of waiting for
users to report them. There’s a good discussion about this decision in
#927 [https://github.com/badges/shields/issues/927]. It’s acceptable to write mocked tests of logic that is
difficult to reach using live tests, however where possible, it’s preferred to
test this kind of logic through unit tests (e.g. of render() and
transform() functions).

Server initialization

	The server entrypoint is server.js [https://github.com/badges/shields/blob/master/server.js] which sets up error
reporting, loads config, and creates an instance of the server.

	The Server, which is defined in
core/server/server.js [https://github.com/badges/shields/blob/master/core/server/server.js], is based on the web
framework Scoutcamp [https://github.com/espadrine/sc]. It creates an http server, sets up helpers for
token persistence and monitoring. Then it loads all the services,
injecting dependencies as it asks each one to register its route
with Scoutcamp.

	The service registration continues in BaseService.register. From its
route property, it derives a regular expression to match the route
path, and invokes camp.route with this value.

	At this point the situation gets gnarly and hard to follow. For the
purpose of initialization, suffice it to say that camp.route invokes a
callback with the four parameters (queryParams, match, end, ask) which
is created in a legacy helper function in
legacy-request-handler.js [https://github.com/badges/shields/blob/master/core/base-service/legacy-request-handler.js]. This callback
delegates to a callback in BaseService.register with four different
parameters (queryParams, match, sendBadge, request), which
then runs BaseService.invoke. BaseService.invoke instantiates the
service and runs BaseService#handle.

Downstream caching

	In production, the majority of requests are served from caches, including
the browser cache, GitHub’s camo proxy server, and other downstream caches.

	The Shields servers sit behind the Cloudflare CDN. The CDN itself handles
about 40% of the HTTPS requests that come in.

	The remaining requests are proxied to one of the servers.

	See the production hosting documentation [https://github.com/badges/shields/blob/master/doc/production-hosting] for a
fuller discussion of the production architecture.

How the server makes a badge

	An HTTPS request arrives. Scoutcamp inspects the URL path and matches it
against the regexes for all the registered routes until it finds one that
matches. (See Initialization above for an explanation of how routes are
registered.)

	Scoutcamp invokes a callback with the four parameters:
(queryParams, match, end, ask). This callback is defined in
legacy-request-handler [https://github.com/badges/shields/blob/master/core/base-service/legacy-request-handler.js]. If the badge result
is found in a relatively small in-memory cache, the response is sent
immediately. Otherwise a timeout is set to handle unresponsive service
code and the next callback is invoked: the legacy handler function.

	The legacy handler function receives
(queryParams, match, sendBadge, request). Its job is to extract data
from the regex match and queryParams, invoke request to fetch
whatever data it needs, and then invoke sendBadge with the result.

	The implementation of this function is in BaseService.register. It
works by running BaseService.invoke, which instantiates the service,
injects more dependencies, and invokes BaseService#handle which is
implemented by the service subclass.

	The job of handle(), which should be implemented by each service
subclass, is to return an object which partially describes a badge or
throw one of the handled error classes. “Partially rendered” most
commonly means a non-empty message and an optional color. In the case
of the Endpoint badge, it could include many other parameters. At the
time of writing the handled error classes were NotFound,
InvalidResponse, Inaccessible, InvalidParameter, and Deprecated.
Throwing any other error is a programmer error which will be
reported [https://github.com/badges/shields/blob/master/doc/production-hosting.md#error-reporting] and described to the user as a shields
internal error.

	A typical handle() function delegates to one or more helpers to
handle stages of the request:

	fetch: load the needed data from the upstream service and
validate it

	transform: pluck, convert, or summarize the response format
into a few properties which will be displayed on the badge

	render: given a few properties, return a message, optional
color, and optional label.

	When an error is thrown, BaseService steps in and converts the error
object to renderable properties: { isError, message, color }.

	The service invokes coalesceBadge [https://github.com/badges/shields/blob/master/core/base-service/coalesce-badge.js] whose job is to
coalesce query string overrides with values from the service and the
service’s defaults to produce an object that fully describes the badge to
be rendered.

	sendBadge is invoked with that object. It does some housekeeping on the
timeout and caches the result. Then it renders the badge to svg or raster
and pushes out the result over the HTTPS connection.

Deprecating Badges

When a service that Shields integrates with shuts down, those badges will no longer work and need to be deprecated within Shields.

Deprecating a badge involves two steps:

	Updating the service code to use the DeprecatedService class

	Updating the service tests to reflect the new behavior of the deprecated service

Update Service Implementation

Locate the source file(s) for the service, which can be found in *.service.js files located within the directory for the service (./services/:service-name/) such as ./services/imagelayers/imagelayers.service.js.

Replace the existing service class implementation with the DeprecatedService class from ./core/base-service/deprecated-service.js using the respective category, route, and label values for that service. For example:

'use strict'

const { deprecatedService } = require('..')

module.exports = deprecatedService({
 category: 'size',
 route: {
 base: 'imagelayers',
 format: '(?:.+?)',
 },
 label: 'imagelayers',
 dateAdded: new Date('2019-xx-xx'), // Be sure to update this with today's date!
})

Update Service Tests

Locate the test file(s) for the service, which can be found in *.tester.js files located in the service directory (./services/:service-name/), such as ./services/imagelayers/imagelayers.tester.js.

With DeprecatedService classes we cannot use createServiceTester() so you will need to create the ServiceTester class directly. For example:

const { ServiceTester } = require('../tester')

const t = (module.exports = new ServiceTester({
 id: 'imagelayers',
 title: 'ImageLayers',
}))

Next you will need to replace/refactor the existing tests to validate the new deprecated badge behavior for this service. Deprecated badges always return a message of no longer available (such as imagelayers | no longer available) so the tests need to be updated to reflect that message value. For example:

t.create('no longer available (previously image size)')
 .get('/image-size/_/ubuntu/latest.json')
 .expectBadge({
 label: 'imagelayers',
 message: 'no longer available',
 })

Make sure to have a live (non-mocked) test for each badge the service provides that validates the each badge returns the no longer available message.

Here is an example of what the final result would look like for a test file:

'use strict'

const { ServiceTester } = require('../tester')

const t = (module.exports = new ServiceTester({
 id: 'imagelayers',
 title: 'ImageLayers',
}))

t.create('no longer available (previously image size)')
 .get('/image-size/_/ubuntu/latest.json')
 .expectBadge({
 label: 'imagelayers',
 message: 'no longer available',
 })

t.create('no longer available (previously number of layers)')
 .get('/layers/_/ubuntu/latest.json')
 .expectBadge({
 label: 'imagelayers',
 message: 'no longer available',
 })

Additional Information

Some other information that may be useful:

	Contributing Docs

	Badge Tutorial

	Service Tests Tutorial

	Previous Pull Requests that deprecated badges like #2352 [https://github.com/badges/shields/pull/2352] and #2410 [https://github.com/badges/shields/pull/2410]

JSON Format

Even though Shields is probably best known for its SVG badges, you can also retrieve
a JSON payload by replacing the .svg extension with .json.

For instance, hitting this endpoint [https://img.shields.io/badge/hello-world-brightgreen.json]
will generate the following payload:

{
 "name": "hello",
 "label": "hello",
 "value": "world",
 "message": "world",
 "color": "brightgreen"
}

Note that the values of the name and value fields are duplicates of the label
and message ones, respectively. As of April 2019, name and value are deprecated
and will be removed in a future release, please consider migrating your application
to use label and message instead.

Feel free to open an issue [https://github.com/badges/shields/issues/new/choose]
if you have any queries regarding the JSON format.

Logos

Using Logos

SimpleIcons

We support a wide range of logos via SimpleIcons [https://simpleicons.org/]. They can be referenced by name e.g:

[image: _images/npm.svg] - https://img.shields.io/npm/v/npm.svg?logo=javascript

Shields logos

We also maintain a small number of custom logos for some services: https://github.com/badges/shields/tree/master/logo They can also be referenced by name and take preference to SimpleIcons e.g:

[image: _images/npm1.svg] - https://img.shields.io/npm/v/npm.svg?logo=npm

Custom Logos

Any custom logo can be passed in a URL parameter by base64 encoding it. e.g:

[image: _images/c4c51792678b06d064f19dab153a095f84175503.svg] - https://img.shields.io/badge/play-station-blue.svg?logo=

Contributing Logos

Our preferred way to consume icons is via the SimpleIcons logo. As a first port of call, we encourage you to contribute logos to the SimpleIcons project [https://github.com/simple-icons/simple-icons]. Please review their guidance [https://github.com/simple-icons/simple-icons/blob/develop/CONTRIBUTING] before contributing.

In some cases we may also accept logo submissions directly. In general, we do this only when:

	We have a corresponding badge on the homepage, (e.g. the Eclipse logo because we support service badges for the Eclipse Marketplace). We may also approve logos for other tools widely used by developers.

	The logo provided in SimpleIcons is unclear when displayed at small size on a badge.

	There is substantial benefit in using a multi-colored icon over a monochrome icon.

	The logo doesn’t meet the requirements to be included in the SimpleIcons set.

If you are submitting a pull request for a custom logo, please:

	Minimize SVG files through SVGO [https://github.com/svg/svgo]. This can be done in one of two ways

	The SVGO Command Line Tool [https://github.com/svg/svgo]

	Install SVGO

	With npm: npm install -g svgo

	With Homebrew: brew install svgo

	Run the following command svgo --precision=3 icon.svg icon.min.svg

	Check if there is a loss of quality in the output, if so increase the precision.

	The SVGOMG Online Tool [https://jakearchibald.github.io/svgomg/]

	Click “Open SVG” and select an SVG file.

	Set the precision to about 3, depending on if there is a loss of quality.

	Leave the remaining settings untouched (or reset them with the button at the bottom of the settings).

	Click the download button.

	Set a viewbox and ensure the logo is scaled to fit the viewbox, while preserving the logo’s original proportions. This means the icon should be touching at least two sides of the viewbox.

	Ensure the logo is vertically and horizontally centered.

	Ensure the logo is minified to a single line with no formatting.

	Ensure the SVG does not contain extraneous attributes.

	Ensure your submission conforms to any relevant brand or logo guidelines.

Problems

We try to ensure our logos are compliant with brand guidelines. If one of our custom logos does not conform to the necessary brand guidelines, please open an issue on the shields.io tracker [https://github.com/badges/shields/issues] and we’ll work with you to resolve it. If a logo from the simple-icons set does not conform to the relevant brand guidelines, please open an issue on the simple-icons tracker [https://github.com/simple-icons/simple-icons/issues] first.

Production hosting

[image: _images/operations.svg]operations issues [https://github.com/badges/shields/issues?q=is%3Aissue+is%3Aopen+label%3Aoperations]

#ops chat room [https://discordapp.com/channels/308323056592486420/480747695879749633]

Component	Subcomponent	People with access
—————————–	——————————-	——————————————————————————————
Badge servers	Account owner	@espadrine
Badge servers	ssh, logs	@espadrine
Badge servers	Deployment	@espadrine, @paulmelnikow
Badge servers	Admin endpoints	@espadrine, @paulmelnikow
Compose.io Redis	Account owner	@paulmelnikow
Compose.io Redis	Account access	@paulmelnikow
Compose.io Redis	Database connection credentials	@espadrine, @paulmelnikow
Zeit Now	Team owner	@paulmelnikow
Zeit Now	Team members	@paulmelnikow, @chris48s, @calebcartwright, @platan
Raster server	Full access as team members	@paulmelnikow, @chris48s, @calebcartwright, @platan
shields-server.com redirector	Full access as team members	@paulmelnikow, @chris48s, @calebcartwright, @platan
Cloudflare	Account owner	@espadrine
Cloudflare	Admin access	@espadrine, @paulmelnikow
GitHub	OAuth app	@espadrine (could be transferred to the badges org [https://developer.github.com/apps/managing-oauth-apps/transferring-ownership-of-an-oauth-app/])
Twitch	OAuth app	@PyvesB
OpenStreetMap (for Wheelmap)	Account owner	@paulmelnikow
DNS	Account owner	@olivierlacan
DNS	Read-only account access	@espadrine, @paulmelnikow, @chris48s
Sentry	Error reports	@espadrine, @paulmelnikow
Frontend	Deployment	Technically anyone with push access but in practice must be deployed with the badge server
Metrics server	Owner	@platan
UptimeRobot	Account owner	@paulmelnikow
More metrics	Owner	@RedSparr0w
Netlify (documentation site)	Owner	@chris48s

There are too many bottlenecks [https://github.com/badges/shields/issues/2577]!

Badge servers

There are three public badge servers on OVH VPS’s.

Cname	Hostname	Type	IP	Location
—————————	——————–	—-	————–	——————
s0.servers.shields.io [https://s0.servers.shields.io/index.html]	vps71670.vps.ovh.ca	VPS	192.99.59.72	Quebec, Canada
s1.servers.shields.io [https://s1.servers.shields.io/index.html]	vps244529.ovh.net	VPS	51.254.114.150	Gravelines, France
s2.servers.shields.io [https://s2.servers.shields.io/index.html]	vps117870.vps.ovh.ca	VPS	149.56.96.133	Quebec, Canada

	These are single-core virtual hosts with 2 GB RAM VPS SSD 1 [https://www.ovh.com/world/vps/vps-ssd.xml].

	The Node version (v9.4.0 at time of writing) and dependency versions on the
servers can be inspected in Sentry, but only when an error occurs.

	The servers use self-signed SSL certificates. (#1460 [https://github.com/badges/shields/issues/1460])

	After accepting the certificate, you can debug an individual server using
the links above.

	The scripts that start the server live in the ServerScript [https://github.com/badges/ServerScript] repo. However
updates must be pulled manually. They are not updated as part of the deploy process.

	The server runs SSH.

	Deploys are made using a git post-receive hook.

	The server uses systemd to automatically restart the server when it crashes.

	Provisioning additional servers is a manual process which is yet to been
documented.

	The public servers do not use docker. The Dockerfile is included for
self-hosting (including on a Docker-capable PaaS).

Attached state

Shields has mercifully little persistent state:

	The GitHub tokens we collect are saved on each server in a cloud Redis database.
They can also be fetched from the GitHub auth admin endpoint [https://github.com/badges/shields/blob/master/services/github/auth/admin.js] for debugging.

	The server keeps a few caches in memory. These are neither persisted nor
inspectable.

	The request cache [https://github.com/badges/shields/blob/master/core/base-service/legacy-request-handler.js#L29-L30]

	The regular-update cache [https://github.com/badges/shields/blob/master/core/legacy/regular-update.js]

Configuration

To bootstrap the configuration process,
the script that starts the server [https://github.com/badges/ServerScript/blob/master/start-shields.sh#L7] sets a single
environment variable:

NODE_CONFIG_ENV=shields-io-production

With that variable set, the server (using config [https://github.com/lorenwest/node-config/wiki/Configuration-Files]) reads these
files:

	local-shields-io-production.yml.
This file contains secrets which are checked in with a deploy commit.

	shields-io-production.yml. This file
contains non-secrets which are checked in to the main repo.

	default.yml. This file contains defaults.

The project ships with dotenv, however there is no .env in production.

Badge CDN

Sitting in front of the three servers is a Cloudflare Free account which
provides several services:

	Global CDN, caching, and SSL gateway for img.shields.io

	Analytics through the Cloudflare dashboard

	DNS hosting for shields.io

Cloudflare is configured to respect the servers’ cache headers.

Frontend

The frontend is served by GitHub Pages [https://pages.github.com/] via the gh-pages branch [https://github.com/badges/shields/tree/gh-pages]. SSL is enforced.

shields.io resolves to the GitHub Pages hosts. It is not proxied through
Cloudflare.

Technically any maintainer can push to gh-pages, but in practice the frontend must be deployed
with the badge server via the deployment process described below.

Raster server

The raster server raster.shields.io (a.k.a. the rasterizing proxy) is
hosted on Zeit Now [https://zeit.co/now]. It’s managed in the
svg-to-image-proxy repo [https://github.com/badges/svg-to-image-proxy].

Deployment

To set things up for deployment:

	Get your SSH key added to the server.

	Clone a fresh copy of the repository, dedicated for deployment.
(Not required, but recommended; and lets you use npm ci below.)

	Add remotes:

git remote add s0 root@s0.servers.shields.io:/home/m/shields.git
git remote add s1 root@s1.servers.shields.io:/home/m/shields.git
git remote add s2 root@s2.servers.shields.io:/home/m/shields.git

origin should point to GitHub as usual.

	Since the deploy uses git worktree, make sure you have git 2.5 or later.

To deploy:

	Use git fetch to obtain a current copy of
local-shields-io-production.yml from the server (or obtain the current
version of that file some other way). Save it in config/.

	Check out the commit you want to deploy.

	Run npm ci. This is super important for the frontend build!

	Run make deploy-s0 to make a canary deploy.

	Check the canary deploy:

	Visit the server [https://s0.servers.shields.io/index.html]. Don’t forget that most of the preview badges
are static!

	Look for errors in Sentry [https://sentry.io/shields/].

	Keep an eye on the status page [https://status.shields.io/].

	After a little while (usually 10–60 minutes), finish the deploy:
make push-s1 push-s2 deploy-gh-pages.

To roll back, check out the commit you want to roll back to and repeat those
steps.

To see which commit is deployed to a server run git ls-remote and then
git log on the HEAD ref. There will be two deploy commits preceded by the
commit which was deployed.

Be careful not to push the deploy commits to GitHub.

make deploy-s0 does the following:

	Creates a working tree in /tmp.

	In that tree, runs features and examples to generate data files
needed for the frontend.

	Builds and checks in the built frontend.

	Checks in local-shields-io-production.yml.

	Pushes to s0, which updates dependencies and then restarts itself.

make push-s1 push-s2 deploy-gh-pages does the following:

	Pushes the same working tree to s1 and s2.

	Creates a new working tree for the frontend.

	Adds a commit cleaning out the index.

	Adds another commit with the build frontend.

	Pushes to gh-pages.

DNS

DNS is registered with DNSimple [https://dnsimple.com/].

Logs

Logs are available on the individual servers via SSH.

Error reporting

Error reporting [https://sentry.io/shields/] is one of the most useful tools we have for monitoring
the server. It’s generously donated by Sentry [https://sentry.io/shields/]. We bundle
raven [https://www.npmjs.com/package/raven] into the application, and the Sentry DSN is configured via
local-shields-io-production.yml (see documentation [https://github.com/badges/shields/blob/master/doc/self-hosting.md#sentry]).

Monitoring

Overall server performance and requests by service are monitored using
Prometheus and Grafana [https://metrics.shields.io/].

Request performance is monitored in two places:

	Status [https://status.shields.io/] (using UptimeRobot [https://uptimerobot.com/])

	Server metrics [https://metrics.shields.io/] using Prometheus and Grafana

	@RedSparr0w’s monitor [https://shields.redsparr0w.com/1568/] which posts notifications [http://shields.redsparr0w.com/discord_notification] to a private
#monitor chat room [https://discordapp.com/channels/308323056592486420/470700909182320646]

Known limitations

	The only way to inspect the commit on the server is with git ls-remote.

	The production deploy installs devDependencies. It does not honor
package-lock.json. (#1988 [https://github.com/badges/shields/issues/1988])

 WARNING: all legacy services have been rewritten, this document may contain outdated information.

Tips for rewriting legacy services

Background

The services are in the process of being rewritten to use our new service
framework (#1358 [https://github.com/badges/shields/issues/1358]).
Meanwhile, the legacy services extend from an abstract
adapter called LegacyService [https://github.com/badges/shields/blob/master/services/legacy-service.js] which provides a place to put the
camp.route() invocation. The wrapper extends from BaseService [https://github.com/badges/shields/blob/master/services/base.js], so it
supports badge examples via category, examples, and route. Setting route
also enables createServiceTester() to infer a service’s base path, reducing
boilerplate for creating the tester [https://github.com/badges/shields/blob/master/doc/service-tests.md#1-boilerplate].

Legacy services look like:

module.exports = class ExampleService extends LegacyService {
 static get category() {
 return 'build'
 }

 static registerLegacyRouteHandler({ camp, cache }) {
 camp.route(
 /^\/example\/([^\/]+)\/([^\/]+)\.(svg|png|gif|jpg|json)$/,
 cache(function(data, match, sendBadge, request) {
 var first = match[1]
 var second = match[2]
 var format = match[3]
 var badgeData = getBadgeData('X' + first + 'X', data)
 badgeData.text[1] = second
 badgeData.colorscheme = 'blue'
 badgeData.colorB = '#008bb8'
 sendBadge(format, badgeData)
 })
)
 }
}

References:

	Current documentation

	Defining a route [https://github.com/badges/shields/blob/master/doc/TUTORIAL.md#42-our-first-badge]

	Defining examples [https://github.com/badges/shields/blob/master/doc/TUTORIAL.md#44-adding-an-example-to-the-front-page]

	Creating a tester [https://github.com/badges/shields/blob/master/doc/service-tests.md#1-boilerplate]

	BaseService, the new service framework [https://github.com/badges/shields/blob/master/services/base.js]

	LegacyService, the adapter [https://github.com/badges/shields/blob/master/services/legacy-service.js]

	Obsolete tutorial on legacy services [https://github.com/badges/shields/blob/e25e748a03d4cbb50c60b69d2b2404fc08e7cead/doc/TUTORIAL], possibly useful as a reference

First, write some tests

If service tests don’t exist for the legacy service, stop and write them first.
It’s recommended to PR these separately. If there’s some test coverage, it’s
probably fine to move right ahead and add more in the process. Make sure the
tests are passing, though.

Organization

	When there’s a single legacy service that handles lots of different things
(e.g. version, license, and downloads), it should be split into three separate
service classes and placed in three separate files, e.g.:

	example-version.service.js

	example-license.service.js

	example-downloads.service.js

	When a badge offers different variants of basically the same thing, it’s okay
to put them in the same service class. For example, daily/weekly/monthly/total
downloads can go in one badge, and star rating vs point rating vs rating count
can go in one badge, and same with various kinds of detail about a pull request.
The hard limit (as of now anyway) is one category per service class.

	If the tests haven’t been split up, split them up too and make sure they
still pass.

Get the route working

	Disable the legacy service by adding a return at the top of
registerLegacyRouteHandler().

	Set up the route for one of the badges. First determine if you can express
the route using a pattern. A pattern (e.g. pattern: ':param1/:param2') is
the simplest way to declare the route, also the most readable, and will be
useful for displaying a badge builder with fields in the front end and
generating badge URLs programmatically.

	When creating the initial route, you can stub out the service. A minimal
service extends BaseJsonService (or BaseService, or one of the others), and
defines route() and handle(). defaultBadgeData is optional but suggested:

const BaseJsonService = require('../base-json')

class ExampleDownloads extends BaseJsonService {
 static get route() {
 return {
 base: 'example/d',
 pattern: ':param1/:param2',
 }
 }

 static defaultBadgeData() {
 return { label: 'downloads' } // or whatever
 }

 async handle({ param1, param2 }) {
 return { message: 'hello' }
 }
}

	We don’t have really good tools for debugging matches, so the best you can do
is run a subset of your tests. To run a single service test, add .only()
somewhere in the chain, and run npm run test:services:trace -- --only=example.

t.create('build status')
 .get('/pip.json')
 .only() // Prevent this ServiceTester from running its other tests.
 .expectBadge(
 label: 'docs',
 message: Joi.alternatives().try(isBuildStatus, Joi.equal('unknown')),
)

	Presumably the test will fail, though by examining the copious output, you
can confirm the route was matched and the named parameters mapped successfully.
Since you’ll have just run the tests on the old code (right?) you’ll know you
haven’t inadvertently changed the route (an easy mistake to make).

	If the legacy service had a base URL and you’ve changed it, you’ll need to
update the tests and the examples. Take care to do that.

Implement render() and handle()

Once the route is working, fill out render() and handle().

	If there’s a single service, you can implement fetch as a method or a
function at the top of the file. If there are more than one service which share
fetching code, you can put the fetch function in example-common.js like this
one for github:

const Joi = require('@hapi/joi')
const { errorMessagesFor } = require('./github-helpers')

const issueSchema = Joi.object({
 head: Joi.object({
 sha: Joi.string().required(),
 }).required(),
}).required()

async function fetchIssue(serviceInstance, { user, repo, number }) {
 return serviceInstance._requestJson({
 schema: issueSchema,
 url: `/repos/${user}/${repo}/pulls/${number}`,
 errorMessages: errorMessagesFor('pull request or repo not found'),
 })
}

module.exports = {
 fetchIssue,
}

or create an abstract superclass like PypiBase:

const Joi = require('@hapi/joi')
const BaseJsonService = require('../base-json')

const schema = Joi.object({
 info: Joi.object({
 ...
 }).required()
}).required()

module.exports = class PypiBase extends BaseJsonService {
 static buildRoute(base) {
 return {
 base,
 pattern: ':egg*',
 }
 }

 async fetch({ egg }) {
 return this._requestJson({
 schema,
 url: `https://pypi.org/pypi/${egg}/json`,
 errorMessages: { 404: 'package or version not found' },
 })
 }
}

	Validation should be handled using Joi. Save this for last. While you’re
getting things working, you can use const schema = Joi.any(), which matches
anything.

	Substitution of default values should also be handled by Joi, using
.default().

	To keep with the design pattern of render(), formatting concerns, including
concatenation and color computation, should be dealt with inside render().
This helps avoid static examples falling out of sync with the implementation.

Error handling

BaseService includes built-in runtime error handling. Error classes are defined
in services/errors.js. Request code and validation code will throw a runtime
error, which will then bubble up to BaseService, which then renders an error
badge. The cases covered by built-in error handling need not be tested in each
service, and existing tests should be removed.

	If an external server can’t be reached or returns a 5xx status code,
_requestJson() along with code in lib/error-helper.js will bubble up an
Inaccessible error.

	If a response does not match the schema, validate() will bubble up an
InvalidResponse error which will display invalid response data.

Error handling can also be customized by the service. Alternate messages
corresponding to HTTP status codes can be specified in the errorMessages
parameter to _requestJson() etc.

For the not found case, a service test should establish that the API is doing
what we expect. If the API returns a 404 error, code in lib/error-helper.js
will automatically throw a NotFound error. The error message can, and
generally should be customized to display something more specific like
package not found or room not found.

Not all services return a 404 response in the not found case. Sometimes a
different status code is returned.

Sometimes a 200 response must be examined to distinguish the not found case from a success case. This can be handled in either of two ways:

	Write a schema which accommodates both the success and error cases.

	Write the schema for the success case. Pass schema: Joi.any() to
_requestJson(). Manually check for the error case, then invoke
_validate() with the success-case schema.

In either case, the service should throw e.g
new NotFound({ prettyMessage: 'package not found' }).

Convert the examples

	Convert all the examples to pattern, namedParams, and staticExample. In some cases you can use the pattern inherited from route, though in other cases you may need to specify a pattern in the example. For example, when showing download badges for several periods, you may want to render the example with an explicit dt instead of :which. You will also need to specify a pattern for badges that use a format regex in the route.

	Open the frontend and check that the static preview badges look good.
Remember, none of them are live.

	Open up the prepared example URLs in their own tabs, and make sure they work correctly.

Validation

When it’s time to add the schema, refer to the Joi API docs:
https://github.com/hapijs/joi/blob/master/API.md

Housekeeping

Switch to createServiceTester:

const t = (module.exports = require('../tester').createServiceTester())

This may require updating the URLs, which will be relative to the service’s base
URL. When using createServiceTester, services need to be specified using
the non-case-sensitive service class name, or a leading substring (e.g.
AppveyorTests or appveyor).

Do this last. Since it involves changing test URLs, and you don’t want to
accidentally change them.

Hosting your own Shields server

Installation

You will need Node 8 or later, which you can install using a
package manager [https://nodejs.org/en/download/package-manager/].

On Ubuntu / Debian:

curl -sL https://deb.nodesource.com/setup_8.x | sudo -E bash -; sudo apt-get install -y nodejs

git clone https://github.com/badges/shields.git
cd shields
npm ci # You may need sudo for this.

Build the frontend

npm run build

Start the server

sudo node server

The server uses port 80 by default, which requires sudo permissions.

There are two ways to provide an alternate port:

PORT=8080 node server
node server 8080

The root gets redirected to https://shields.io.

For testing purposes, you can go to http://localhost/.

Heroku

Once you have installed the Heroku CLI [https://devcenter.heroku.com/articles/heroku-cli]

heroku login
heroku create your-app-name
git push heroku master
heroku open

Docker

You can build and run the server locally using Docker. First build an image:

$ docker build -t shields .
Sending build context to Docker daemon 3.923 MB
…
Successfully built 4471b442c220

Optionally, create a file called shields.env that contains the needed
configuration. See server-secrets.md and config/custom-environment-variables.yml for examples.

Then run the container:

$ docker run --rm -p 8080:80 --name shields shields
or if you have shields.env file, run the following instead
$ docker run --rm -p 8080:80 --env-file shields.env --name shields shields

> gh-badges@1.1.2 start /usr/src/app
> node server.js

http://[::1]/

Assuming Docker is running locally, you should be able to get to the
application at http://localhost:8080/.

If you run Docker in a virtual machine (such as boot2docker or Docker Machine)
then you will need to replace localhost with the IP address of that virtual
machine.

Raster server

If you want to host PNG badges, you can also self-host a raster server [https://github.com/badges/svg-to-image-proxy]
which points to your badge server. It’s designed as a web function which is
tested on Zeit Now, though you may be able to run it on AWS Lambda. It’s
built on the micro [https://github.com/zeit/micro] framework, and comes with a start script that allows
it to run as a standalone Node service.

	In your raster instance, set BASE_URL to your Shields instance, e.g.
https://shields.example.co.

	Optionally, in your Shields, instance, configure RASTER_URL to the base
URL, e.g. https://raster.example.co. This will send 301 redirects
for the legacy raster URLs instead of 404’s.

If anyone has set this up, more documentation on how to do this would be
welcome! It would also be nice to ship a Docker image that includes a
preconfigured raster server.

Zeit Now

To deploy using Zeit Now:

npm run build # Not sure why, but this needs to be run before deploying.
now

Persistence

To enable Redis-backed GitHub token persistence, point REDIS_URL to your
Redis installation.

Server secrets

You can add your own server secrets in environment variables or config/local.yml.

These are documented in server-secrets.md

Separate frontend hosting

If you want to host the frontend on a separate server, such as cloud storage
or a CDN, you can do that.

First, build the frontend, pointing GATSBY_BASE_URL to your server.

GATSBY_BASE_URL=https://your-server.example.com npm run build

Then copy the contents of the build/ folder to your static hosting / CDN.

There are also a couple settings you should configure on the server.

If you want to use server suggestions, you should also set ALLOWED_ORIGIN:

ALLOWED_ORIGIN=http://my-custom-shields.s3.amazonaws.com,https://my-custom-shields.s3.amazonaws.com

This should be a comma-separated list of allowed origin headers. They should
not have paths or trailing slashes.

To help out users, you can make the Shields server redirect the server root.
Set the REDIRECT_URI environment variable:

REDIRECT_URI=http://my-custom-shields.s3.amazonaws.com/

Sentry

In order to enable integration with Sentry [https://sentry.io], you need your own Sentry DSN [https://docs.sentry.io/quickstart/#configure-the-dsn]. It’s an URL in format https://{PUBLIC_KEY}:{SECRET_KEY}@sentry.io/{PROJECT_ID}.

How to obtain the Sentry DSN

	Sign up [https://sentry.io/pricing/] for Sentry

	Log in to Sentry

	Create a new project for Node.js

	You should see Sentry DSN [https://docs.sentry.io/quickstart/#configure-the-dsn] for your project. Sentry DSN can be found by navigating to [Project Name] -> Project Settings -> Client Keys (DSN) as well.

Start the server using the Sentry DSN. You can set it:

	by SENTRY_DSN environment variable

sudo SENTRY_DSN=https://xxx:yyy@sentry.io/zzz node server

	or by sentry_dsn secret property defined in private/secret.json

sudo node server

Prometheus

Shields uses prom-client [https://github.com/siimon/prom-client] to provide default metrics [https://prometheus.io/docs/instrumenting/writing_clientlibs/#standard-and-runtime-collectors]. These metrics are disabled by default.
You can enable them by METRICS_PROMETHEUS_ENABLED environment variable.

METRICS_PROMETHEUS_ENABLED=true npm start

Metrics are available at /metrics resource.

Server Secrets

It is possible to provide a token or credentials for a number of external
services. These may be used to lift a rate limit or provide access to
private resources from a self-hosted instance.

There are two ways of setting secrets:

	Via environment variables. This is a good way to set them in a PaaS
environment.

DRONE_TOKEN=...
DRONE_ORIGINS="https://drone.example.com"

	Via checked-in config/local.yml:

public:
 services:
 drone:
 authorizedOrigins: ['https://drone.example.com']
private:
 drone_token: '...'

For more complex scenarios, configuration files can cascade. See the node-config documentation [https://github.com/lorenwest/node-config/wiki/Configuration-Files]
for details.

Authorized origins

Several of the badges provided by Shields allow users to specify the target
URL/server of the upstream instance to use via a query parameter in the badge URL
(e.g. https://img.shields.io/nexus/s/com.google.guava/guava?server=https%3A%2F%2Foss.sonatype.org).
This supports scenarios where your users may need badges from multiple upstream
targets, for example if you have more than one Nexus server.

Accordingly, if you configure credentials for one of these services with your
self-hosted Shields instance, you must also specifically authorize the hosts
to which the credentials are allowed to be sent. If your self-hosted Shields
instance then receives a badge request for a target that does not match any
of the authorized origins, one of two things will happen:

	if credentials are required for the targeted service, Shields will render
an error badge.

	if credentials are optional for the targeted service, Shields will attempt
the request, but without sending any credentials.

When setting authorized origins through an environment variable, use a space
to separate multiple origins. Note that failing to define authorized origins
for a service will default to an empty list, i.e. no authorized origins.

It is highly recommended to use https origins with valid SSL, to avoid the
possibility of exposing your credentials, for example through DNS-based attacks.

It is also recommended to use tokens for a service account having
the fewest privileges needed [https://en.wikipedia.org/wiki/Principle_of_least_privilege] for fetching the relevant status
information.

Services

Azure DevOps

	AZURE_DEVOPS_TOKEN (yml: private.azure_devops_token)

An Azure DevOps Token (PAT) is required for accessing private Azure DevOps projects [https://docs.microsoft.com/en-us/azure/devops/organizations/public/about-public-projects?view=vsts].

Create a PAT [https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=vsts#create-personal-access-tokens-to-authenticate-access] using an account that has access to your target Azure DevOps projects. Your PAT only needs the following scopes: [https://docs.microsoft.com/en-us/azure/devops/integrate/get-started/authentication/oauth?view=vsts#scopes]

	Build (read)

	Release (read)

	Test Management (read)

Bintray

	BINTRAY_USER (yml: private.bintray_user)

	BINTRAY_API_KEY (yml: private.bintray_apikey)

The bintray API requires authentication [https://bintray.com/docs/api/#_authentication]
Create an account and obtain a token from the user profile page.

Bitbucket (Cloud)

	BITBUCKET_USER (yml: private.bitbucket_username)

	BITBUCKET_PASS (yml: private.bitbucket_password)

Bitbucket badges use basic auth. Provide a username and password to give your
self-hosted Shields installation access to private repositories hosted on bitbucket.org.

Bitbucket Server

	BITBUCKET_SERVER_ORIGINS (yml: public.services.bitbucketServer.authorizedOrigins)

	BITBUCKET_SERVER_USER (yml: private.bitbucket_server_username)

	BITBUCKET_SERVER_PASS (yml: private.bitbucket_server_password)

Bitbucket badges use basic auth. Provide a username and password to give your
self-hosted Shields installation access to a private Bitbucket Server instance.

Drone

	DRONE_ORIGINS (yml: public.services.drone.authorizedOrigins)

	DRONE_TOKEN (yml: private.drone_token)

The self-hosted Drone API requires authentication [https://0-8-0.docs.drone.io/api-authentication/]. Log in to your
Drone instance and obtain a token from the user profile page.

GitHub

	GITHUB_URL (yml: public.services.github.baseUri)

	GH_TOKEN (yml: private.gh_token)

Because of Github rate limits, you will need to provide a token, or else badges
will stop working once you hit 60 requests per hour, the
unauthenticated rate limit [https://developer.github.com/v3/#rate-limiting].

You can create a personal access token [https://github.com/settings/tokens] through the
Github website. When you create the token, you can choose to give read access
to your repositories. If you do that, your self-hosted Shields installation
will have access to your private repositories.

When a gh_token is specified, it is used in place of the Shields token
rotation logic.

GITHUB_URL can be used to optionally send all the GitHub requests to a
GitHub Enterprise server. This can be done in conjunction with setting a
token, though it’s not required.

	GH_CLIENT_ID (yml: private.gh_client_id)

	GH_CLIENT_SECRET (yml: private.gh_client_secret)

These settings are used by shields.io for GitHub OAuth app authorization
but will not be necessary for most self-hosted installations. See
production-hosting.md.

Jenkins CI

	JENKINS_ORIGINS (yml: public.services.jenkins.authorizedOrigins)

	JENKINS_USER (yml: private.jenkins_user)

	JENKINS_PASS (yml: private.jenkins_pass)

Provide a username and password to give your self-hosted Shields installation
access to a private Jenkins CI instance.

Jira

	JIRA_ORIGINS (yml: public.services.jira.authorizedOrigins)

	JIRA_USER (yml: private.jira_user)

	JIRA_PASS (yml: private.jira_pass)

Provide a username and password to give your self-hosted Shields installation
access to a private JIRA instance.

Nexus

	NEXUS_ORIGINS (yml: public.services.nexus.authorizedOrigins)

	NEXUS_USER (yml: private.nexus_user)

	NEXUS_PASS (yml: private.nexus_pass)

Provide a username and password to give your self-hosted Shields installation
access to your private nexus repositories.

npm

	NPM_ORIGINS (yml: public.services.npm.authorizedOrigins)

	NPM_TOKEN (yml: private.npm_token)

Generate an npm token [https://docs.npmjs.com/getting-started/working_with_tokens] to give your self-hosted Shields
installation access to private npm packages

SymfonyInsight (formerly Sensiolabs)

	SL_INSIGHT_USER_UUID (yml: private.sl_insight_userUuid)

	SL_INSIGHT_API_TOKEN (yml: private.sl_insight_apiToken)

The SymfonyInsight API requires authentication. To obtain a token,
Create an account, sign in and obtain a uuid and token from your
account page [https://insight.sensiolabs.com/account].

SonarQube

	SONAR_ORIGINS (yml: public.services.sonar.authorizedOrigins)

	SONARQUBE_TOKEN (yml: private.sonarqube_token)

Generate a token [https://docs.sonarqube.org/latest/user-guide/user-token/]
to give your self-hosted Shields installation access to a
private SonarQube instance or private project on a public instance.

TeamCity

	TEAMCITY_ORIGINS (yml: public.services.teamcity.authorizedOrigins)

	TEAMCITY_USER (yml: private.teamcity_user)

	TEAMCITY_PASS (yml: private.teamcity_pass)

Provide a username and password to give your self-hosted Shields installation
access to your private nexus repositories.

Twitch

	TWITCH_CLIENT_ID (yml: twitch_client_id)

	TWITCH_CLIENT_SECRET (yml: twitch_client_secret)

Register an application in the Twitch developer console [https://dev.twitch.tv/console]
in order to obtain a client id and a client secret for making Twitch API calls.

Wheelmap

	WHEELMAP_TOKEN (yml: private.wheelmap_token)

The wheelmap API requires authentication. To obtain a token,
Create an account, sign in [http://classic.wheelmap.org/en/users/sign_in] and use the Authentication Token
displayed on your profile page.

Error reporting

	SENTRY_DSN (yml: private.sentry_dsn)

A Sentry DSN [https://docs.sentry.io/error-reporting/quickstart/?platform=javascript#configure-the-dsn] may be used to send error reports from your installation to
Sentry.io [http://sentry.io/]. For more info, see the self hosting docs [https://github.com/badges/shields/blob/master/doc/self-hosting.md#sentry].

Service tests

When creating a badge for a new service or changing a badge’s behavior,
automated tests should be included. They serve three purposes:

	The contributor and reviewer can easily verify the code works as
intended.

	When a badge stops working due to an upstream API, maintainers can find out
right away.

	They speed up future contributors when they are debugging or improving a
badge.

Test should cover:

	Valid behavior

	Optional parameters like tags or branches

	Any customized error handling

	If a non-trivial validator is defined, include tests for malformed responses

Tutorial

Before getting started, set up a development environment by following the
setup instructions [https://github.com/badges/shields/blob/master/doc/TUTORIAL.md#2-setup]

We will write some tests for the Wercker Build service [https://github.com/badges/shields/blob/master/services/wercker/wercker.service.js]

(1) Boilerplate

The code for our badge is in services/wercker/wercker.service.js. Tests for this badge should be stored in services/wercker/wercker.tester.js.

We’ll start by adding some boilerplate to our file:

'use strict'

const t = (module.exports = require('../tester').createServiceTester())

If our .service.js module exports a single class, we can
require('../tester').createServiceTester(), which uses convention to create a
ServiceTester object. Calling this inside
services/wercker/wercker.tester.js will create a ServiceTester object
configured for the service exported in services/wercker/wercker.service.js.
We will add our tests to this ServiceTester object t, which is exported
from the module.

(2) Our First Test Case

First we’ll add a test for the typical case:

const { isBuildStatus } = require('../test-validators')

t.create('Build status')
 .get('/build/wercker/go-wercker-api.json')
 .expectBadge({ label: 'build', message: isBuildStatus })

	The create() method adds a new test to the tester object.
The chained-on calls come from the API testing framework IcedFrisby [https://github.com/MarkHerhold/IcedFrisby].
Here’s a longer example [https://github.com/MarkHerhold/IcedFrisby/#show-me-some-code] and the complete API guide [https://github.com/MarkHerhold/IcedFrisby/blob/master/API].

	We use the get() method to request a badge. There are several points to consider here:

	We need a real project to test against. In this case we have used wercker/go-wercker-api [https://app.wercker.com/wercker/go-wercker-api/runs] but we could have chosen any stable project.

	Note that when we call our badge, we are allowing it to communicate with an external service without mocking the response. We write tests which interact with external services, which is unusual practice in unit testing. We do this because one of the purposes of service tests is to notify us if a badge has broken due to an upstream API change. For this reason it is important for at least one test to call the live API without mocking the interaction.

	All badges on shields can be requested in a number of formats. As well as calling https://img.shields.io/wercker/build/wercker/go-wercker-api.svg to generate [image: _images/go-wercker-api.svg] we can also call https://img.shields.io/wercker/build/wercker/go-wercker-api.json to request the same content as JSON. When writing service tests, we request the badge in JSON format so it is easier to make assertions about the content.

	We don’t need to explicitly call /wercker/build/wercker/go-wercker-api.json here, only /build/wercker/go-wercker-api.json. When we create a tester object with createServiceTester() the URL base defined in our service class (in this case /wercker) is used as the base URL for any requests made by the tester object.

	expectBadge() is a helper function which accepts either a string literal or a Joi [https://github.com/hapijs/joi] schema for the different fields.
Joi is a validation library that is build into IcedFrisby which you can use to
match based on a set of allowed strings, regexes, or specific values. You can
refer to their API reference [https://github.com/hapijs/joi/blob/master/API].

	We expect label to be a string literal "build".

	Because this test depends on a live service, we don’t want our test to depend on our API call returning a particular build status. Instead we should perform a “picture check” to assert that the badge data conforms to an expected pattern. Our test should not depend on the status of the example project’s build, but should fail if trying to generate the badge throws an error, or if there is a breaking change to the upstream API. In this case we will use a pre-defined regular expression to check that the badge value looks like a build status. services/test-validators.js [https://github.com/badges/shields/blob/master/services/test-validators.js] defines a number of useful validators we can use. Many of the common badge types (version, downloads, rank, etc.) already have validators defined here.

When defining an IcedFrisby test, typically you would invoke the toss()
method, to register the test. This is not necessary, because the Shields test
harness will call it for you.

(3) Running the Tests

Lets run the test we have written:

npm run test:services -- --only=wercker

The --only= option indicates which service or services you want to test. You
can provide a comma-separated list here.

The -- tells the NPM CLI to pass the remaining arguments through to the test
runner.

Here’s the output:

Server is starting up: http://lib/service-test-runner/cli.js:80/
 Wercker
 Build status
 ✓
 [GET /build/wercker/go-wercker-api.json] (572ms)

 1 passing (1s)

That’s looking good!

Sometimes if we have a failing test, it is useful to be able to see some logging output to help work out why the test is failing. We can do that by calling npm run test:services:trace. Try running

npm run test:services:trace -- --only=wercker

to run the test with some additional debug output.

(4) Writing More Tests

We should write tests cases for valid paths through our code. The Wercker badge supports an optional branch parameter so we’ll add a second test for a branch build.

t.create('Build status (with branch)')
 .get('/build/wercker/go-wercker-api/master.json')
 .expectBadge({ label: 'build', message: isBuildStatus })

Server is starting up: http://lib/service-test-runner/cli.js:80/
 Wercker
 Build status
 ✓
 [GET /build/wercker/go-wercker-api.json] (572ms)
 Build status (with branch)
 ✓
 [GET /build/wercker/go-wercker-api/master.json] (368ms)

 2 passing (1s)

Once we have multiple tests, sometimes it is useful to run only one test. We can do this using the --fgrep argument. For example:

npm run test:services -- --only="wercker" --fgrep="Build status (with branch)"

Having covered the typical and custom cases, we’ll move on to errors. We should include a test for the ‘not found’ response and also tests for any other custom error handling. The Wercker integration defines a custom error condition for 401 as well as a custom 404 message:

errorMessages: {
 401: 'private application not supported',
 404: 'application not found',
}

First we’ll add a test for a project which will return a 404 error:

t.create('Build status (application not found)')
 .get('/build/some-project/that-doesnt-exist.json')
 .expectBadge({ label: 'build', message: 'application not found' })

In this case we are expecting a string literal instead of a pattern for message. This narrows down the expectation and gives us a more helpful error message if the test fails.

We also want to include a test for the ‘private application not supported’ case. One way to do this would be to find another example of a private project which is unlikely to change. For example:

t.create('Build status (private application)')
 .get('/build/wercker/blueprint.json')
 .expectBadge({ label: 'build', message: 'private application not supported' })

(5) Mocking Responses

If we didn’t have a stable example of a private project, another approach would be to mock the response. An alternative test for the ‘private application’ case might look like:

t.create('Build status (private application)')
 .get('/build/wercker/go-wercker-api.json')
 .intercept(nock =>
 nock('https://app.wercker.com/api/v3/applications/')
 .get('/wercker/go-wercker-api/builds?limit=1')
 .reply(401)
)
 .expectBadge({ label: 'build', message: 'private application not supported' })

This will intercept the request and provide our own mock response.
We use the intercept() method provided by the
icedfrisby-nock plugin [https://github.com/paulmelnikow/icedfrisby-nock#usage]. It takes a setup function,
which returns an interceptor, and exposes the full API of the HTTP mocking
library Nock [https://github.com/node-nock/nock].

Nock is fussy. All parts of a request must match perfectly for the mock to
take effect, including the HTTP method (in this case GET), scheme (https), host,
and path.

Our test suite should also include service tests which receive a known value from the API. For example, in the render() method of our service, there is some logic which sets the badge color based on the build status:

static render({ status, result }) {
 if (status === 'finished') {
 if (result === 'passed') {
 return { message: 'passing', color: 'brightgreen' }
 } else {
 return { message: result, color: 'red' }
 }
 }
 return { message: status }
}

We can also use nock to intercept API calls to return a known response body.

t.create('Build passed')
 .get('/build/wercker/go-wercker-api.json')
 .intercept(nock =>
 nock('https://app.wercker.com/api/v3/applications/')
 .get('/wercker/go-wercker-api/builds?limit=1')
 .reply(200, [{ status: 'finished', result: 'passed' }])
)
 .expectBadge({
 label: 'build',
 message: 'passing',
 color: 'brightgreen',
 })

t.create('Build failed')
 .get('/build/wercker/go-wercker-api.json')
 .intercept(nock =>
 nock('https://app.wercker.com/api/v3/applications/')
 .get('/wercker/go-wercker-api/builds?limit=1')
 .reply(200, [{ status: 'finished', result: 'failed' }])
)
 .expectBadge({ label: 'build', message: 'failed', color: 'red' })

Note that in these tests, we have specified a color parameter in expectBadge. This is helpful in a case like this when we want to test custom color logic, but it is only necessary to explicitly test color values if our badge implements custom logic for setting the badge colors.

Code coverage

By checking code coverage, we can make sure we’ve covered all our bases.

We can generate a coverage report and open it:

npm run coverage:test:services -- --only=wercker
npm run coverage:report:open

Pull requests

The affected service ids should be included in square brackets in the pull request
title. That way, Circle CI will run those service tests. When a pull request
affects multiple services, they should be separated with spaces. The test
runner is case-insensitive, so they should be capitalized for readability.

For example:

	[Travis] Fix timeout issues

	[Travis Sonar] Support user token authentication

	Add tests for [CRAN] and [CPAN]

In the rare case when it’s necessary to see the output of a full service-test
run in a PR, include [*****] in the title. Unless all the tests pass, the build
will fail, so likely it will be necessary to remove it and re-run the tests
before merging.

Getting help

If you have questions about how to write your tests, please open an issue. If
there’s already an issue open for the badge you’re working on, you can post a
comment there instead.

Further reading

	IcedFrisby API [https://github.com/MarkHerhold/IcedFrisby/blob/master/API]

	Joi API [https://github.com/hapijs/joi/blob/master/API]

	icedfrisby-nock [https://github.com/paulmelnikow/icedfrisby-nock#usage]

	Nock API [https://github.com/node-nock/nock#use]

Notable Projects Using Shields

	https://github.com/AFNetworking/AFNetworking

	https://github.com/angular/angular.js

	https://github.com/ansible/ansible

	https://github.com/apple/swift

	https://github.com/atom/atom

	https://github.com/babel/babel

	https://github.com/bevacqua/dragula

	https://github.com/bower/bower

	https://github.com/chartjs/Chart.js

	https://github.com/creationix/nvm

	https://github.com/discourse/discourse

	https://github.com/docker/docker

	https://github.com/electron/electron

	https://github.com/elm-lang/core

	https://github.com/emberjs/ember.js

	https://github.com/expressjs/express

	https://github.com/facebook/react

	https://github.com/FortAwesome/Font-Awesome

	https://github.com/gitlabhq/gitlabhq

	https://github.com/gulpjs/gulp

	https://github.com/h5bp/html5-boilerplate

	https://github.com/jakubroztocil/httpie

	https://github.com/jekyll/jekyll

	https://github.com/kennethreitz/requests

	https://github.com/kubernetes/kubernetes

	https://github.com/laravel/laravel

	https://github.com/less/less.js

	https://github.com/Microsoft/TypeScript

	https://github.com/Microsoft/vscode

	https://github.com/mitchellh/vagrant

	https://github.com/Modernizr/Modernizr

	https://github.com/moment/moment

	https://github.com/mrdoob/three.js

	https://github.com/necolas/normalize.css

	https://github.com/nodejs/node

	https://github.com/plataformatec/devise

	https://github.com/postcss/postcss

	https://github.com/rails/rails

	https://github.com/reactjs/redux

	https://github.com/socketio/socket.io

	https://github.com/tensorflow/tensorflow

	https://github.com/TryGhost/Ghost

	https://github.com/twbs/bootstrap

	https://github.com/videojs/video.js

	https://github.com/vuejs/vue

	https://github.com/webpack/webpack

	https://github.com/yarnpkg/yarn

	https://github.com/zurb/foundation-sites

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

